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The Navier-Stokes equations are solved numerically for two-dimensional peristaltic 
flows by using the finite-difference technique employing the upwind SOR method, 
and the velocity, pressure and stress fields for various peristaltic flows are obtained. 
The influences of the magnitudes of wave amplitude, wavelength and Reynolds 
number on the flow are investigated through numerical calculations, and the results 
are compared with those of the perturbation analysis. The paper is mainly concerned 
with elucidating the characteristics of the peristaltic flow at moderate Reynolds 
numbers where peristaltic pumping has a possibility of engineering application. As 
a result, it is found that the validity of the perturbation solutions by J a w  (1973) 
and Zien & Ostrach (1970) are restricted within a narrower range than that which they 
predicted, and that the reflux phenomenon in the flow does change the whole situation 
according to Reynolds number. 

1. Introduction 
When a progressive wave resulting from area contraction and expansion of an 

extensible tube propagates along the length of the tube, a fluid contained in the tube 
is mixed and transported in the direction of the wave propagation as if it were squeezed 
out by the moving wall. This phenomenon, called ‘peristalsis’, is an inherent property 
of any tubular organ of the human body such as the ureter, the gastro-intestinal tract, 
or the small blood vessels. In the last two decades the mechanism of this mixing and 
transporting peristaltic motion has acquired general interest in the field of hydro- 
dynamics, and a number of studies have been undertaken with respect to peristaltic 
flows by applying a simple hydrodynamic model represented by sinusoidal waves. 
Some of them are summarized in the review by Jaffrin & Shapiro (1971). Since these 
studies have been developed in connection with the function of organs of the human 
body, many of them have been concerned with the flow within a range of small Rey- 
nolds numbers. Moreover, peristaltic pumping has been quite recently utilized for the 
transport of such fluids as blood, slurries, corrosive fluids, and it is desirable to prevent 
them from coming into contact with the mechanical parts of the pump. So it is necessary 
that the peristaltic flow at moderate Reynolds numbers should be analysed. 

In the range of finite Reynolds number, a theoretical analysis of the peristaltic flow 
is extremely difficult because of the nonlinearity due to the interaction between the 
moving wall and the flow field. Fung & Yih (1968) h t  performed a study of peristaltic 
flow including small nonlinear effects. They treated the case of a two-dimensional 
channel with a small ratio of amplitude to wavelength of the peristaltic wave, and 
their analysis was based upon perturbations of the ratio of wave amplitude to mean 
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channel width. Shapiro, Jaffrin & Weinberg (1969) obtained a linear solution of 
peristaltic flow by considering the limiting case in which the wavelength was infinite 
and the fluid inertia could be neglected, and by applying Stokes’ approximation to 
the flow. This linear solution was modified later by Jaffrin (1973) in his consideration 
of small nonlinear effects. He made a perturbation analysis so as to obtain the series 
solutions for both the case of long wavelength at zero Reynolds number and the case 
of small Reynolds number at infinite wavelength. The applicable range of these 
series solutions was studied through a comparison with experimental results (Weinberg, 
Eckstein & Shapiro 1971). For the limiting case of large Reynolds number with small 
amplitude and long wavelength, Hanin (1968) analysed the flow by applying the 
boundary-layer equation, and Ayukawa, Kawai & Kimura (1981) obtained experi- 
mental results as well as an approximate solution of potential flow on the basis of 
source distributions. In these two works, the peristaltic pumping was investigated 
with reference to engineering applications. On the other hand, with respect tonumerical 
investigations, we have the analyses of Tong & Vawter (1972) and Brown & Hung 
(1977). The former uses the finite-element method that.is available for the case of 
large amplitude, and the latter applies the finite-difference method by employing 
orthogonal curvilinear coordinates. But each of them has its disadvantage in requiring 
enormous and complicated calculations and/or a restriction on the geometry of the 
calculating region. 

In this paper, the Navier-Stokes equations are solved numerically by using a 
finite-difference technique on the peristaltic flow induced by an infinite train of sinu- 
soidal waves in a two-dimensional channel. Simple and appropriate oblique lattice 
coordinates are introduced and the governing equations are represented by the 
difference equations including the stream function and the vorticity as the unknowns. 
The upwind successive-over-relaxation method (upwind SOR method) is used to 
solve them. Although the theoretical analyses in the previous works are applicable 
only for the specific flow in which one or more simplifying assumptions are introduced 
on the magnitudes of wave amplitude, wavelength and Reynolds number, the present 
numerical method has no restriction in principle on these three quantities, so it is 
possible to obtain solutions in a wider range of them. Various peristaltic flows are 
calculated under the conditions of finite amplitudes, finite wavelengths and finite 
Reynolh numbers. The velocity, pressure and stress fields are obtained, and the 
relations between the pressure rise per wavelength and the time-mean flow that 
describe the primary properties of the peristaltic pumping are discussed. The trajec- 
tories of the fluid particles are also shown to exhibit the ‘reflux’ phenomenon. The 
investigation by means of numerical calculations is made on the influences of the 
magnitudes of wave amplitude, wavelength and Reynolds number on the flow, 
compared with the theoretical results obtained by the perturbation methods. In  
particular, the authors feel a great interest in the application of peristaltic motion to 
a transporting device in an engineering field ; therefore the greatest part of this paper 
is devoted to elucidating the characteristics of the peristaltic flow in the range of 
moderate Reynolds number where peristaltic pumping has a possibility of engineering 
application. 
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FIQDRE 1. Geometry of two-dimensional peristaltic channel. 

2. Governing equations and boundary conditions 
We consider first the two-dimensional channel with X-axis longitudinal and Y- 

axis normal to it (see figure 1). The peristaltic wall of the channel is defined by the 
equation 

(1) 

so that an infinite train of sinusoidal waves progresses along the wall in the positive 
X-direction with the velocity c. The plane Y = 0 can be interpreted either as the 
fixed wall of the asymmetrical channel with one wall moving or as the centre axis of 
the symmetrical channel with both walls moving, provided that the boundary condi- 
tion on it is introduced appropriately. 

In the fixed coordinates (X, Y) (the laboratory frame), the flow in the channel is 
unsteady because of the moving boundary. However, if observed in the moving co- 
ordinates (2, y) (the wave frame), which travel in the positive x-direction with the 
same speed as the waves, the developed flow can be treated as steady because the 
configuration of the wall appears to be stationary. The transformations between the 

2n 
h 

H ( X , T )  = ~ - - B c o s - ( X - C Z ' ) ,  

two frames are 
x = X - C T ,  y =  Y ,  u = U - C ,  v = V ,  

where (U, V) and (u, v )  represent the velocity components in the laboratory and the 
wave frame respectively. In this paper, the flow will be treated as steady in the wave 
frame, and the flow in the laboratory frame will be derived from this steady solution 
by using the relationships in (2). 

In the wave frame, the governing equations are the two-dimensional steady Navier- 
Stokes equations and the continuity equation. As is usual in the numerical analysis 
of the Navier-Stokes equations, the stream function + and the vorticity w are intro- 
duced as follows: 
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Then the governing equations can be reduced to 

-+- = -0, 
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(5) 

(6) 

where v denotes the kinematic viscosity of the fluid. Also, the configuration of the 
peristaltic wall can be represented by 

(7) 

as+ as+ 
ax% 

ayax axay 
------ 

2nx 
7 ( ~ )  = h-ecos- ,  

A 

and the no-slip condition or the symmetry 
can be expressed as follows : 

- - c  (fixed wall) a+ 
aY 

u = - -  

au as$ 
aY aYa 
- = - = 0 (centre axis) 

condition on the planes y = 0 and y = g(x) 

Moreover, since both the planes y = 0 and y = ~ ( x )  constitute the streamlines in the 
wave frame, the flow rate q in the wave frame is constant at  all cross-sections of the 
channel. Thus the following equations can be obtained: 

9 = 0 on y = 0, + = q ( =  constant) on y = q(x), (9 1 
where the relation q = @-ch  holds between the flow rate q in the wave frame and 
the time-mean flow a in the laboratory frame. 

The dimensionless variables defined by 

will be used; and the amplitude ratio 9, the wavenumber a, and the Reynolds number 

h Re, are defined by 
(11) 

ch 
Re =-a. a = -  € 

9-11, A' V 

Consequently the governing equations and the boundary conditions can be re- 

(12) 
a s p  as+-, 
ax's %'= 

arranged as follows : 
as- +-- = -u', 
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FraoBE 2. Calculating regon and oblique lattice coordinates, which are employed 
the nUm0l'iCd &IldySiS. o,s,; X , pb; 0, Rb. 

on y' = 0 ,  

p = o ,  -- all.' axl - 0, - = - 1 (fixed wall) w 
-- - 0 (centre axis) a%v 
@I8 

Hereinafter the primes indicating the dimensionless quantities will be omitted. 

3. Numerical analysis 
3.1. Analysis of the j b w  field 

The flow induced by an infinite train of peristaltic waves is expected to be the same 
as the periodic flow that appears at the central part of the finite calculating region, 
where no influences of the boundary conditions at the leading and the trailing end 
section are found. We consider the finite region ABCD with the integral number L 
of waves in the wave frame, aa shown in figure 2. As boundary conditions, arbitrary 
conditions on the two end sections BC, DA and the no-slip condition or the symmetry 
condition on the boundaries AB, CD are considered. We thus obtain 

@ = O ,  -= -  " 1 (fixed wall) 
ay ) onAB 
-- a" - o (centre axis) 
@a 

@=f(y) ,  g = O  onBC, ax 

@ = q ,  -- onCD, 
ay 

@ =f(Y), a' = O  onDA, 

FLU 122 
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where p is the dimensionless flow rate in the wave frame and f (y) is an arbitrary func- 
tion, which is zero at the points A ,  B and equal to q at the points C, D. 

Under these boundary conditions, the governing equations (12) and (13) are solved 
numerically in the region ABCD. In the analysis, simple oblique lattice coordinates 
are introduced, as shown in figure 2. One wave region is divided by an integral number 
N of meshes in the x-direction and by an integral number M in the y-direction, and 
the governing equations (12) and (13) and the boundary conditions (15) can be 
approximated by the finite-difference equations to get the numerical solutions. 

A detailed description of the numerical method used here has been reported in an- 
other paper (Ayukawa & Takabatake 1982). For the convenience of readers, the 
derivation of the finite-difference equations is set out in the appendix and the com- 
putational procedure is presented in the following. 

Among all of the lattice points included in the region ABCD, the points on the 
boundary are denoted by sh, the interior points next to the boundary by Ph, and the 
other intenor points by R,. Under the conditions of the given values of $ and its 
normal derivatives on S h ,  we aim to obtain a numerical solution $f)5 of (A 1) on 
Rh+Ph and a numerical solution uf5 of (A 4) on Rh+Ph+Sh. Computations are 
carried out according to  the following procedure. 

(i) Initially, we set 

$C!j = C+ On Rh+Ph, Wf$ = c, On Rh+Ph+Sh, 

where c$, c, are arbitrary constants. 

on Rh+ Ph. We get $i>k) on Rh by the’use of the following recursion formula based 
upon (A 1): 

(2) In  order to determine +?!j on R, by using the SOR method, we set $:::’ = 

+i, i k)  = (1 - r*) - ‘11. {a, $j>;jl) + a2 +jt>ty1) + a3 ~~~~~J 1 (16) 
a0 

+ a4 %b?1+ a5 7 1  + ~ 1 ,  k) j-1+ u$:\> (0 < rp  < 2), 

$%, ( 1 9  5 k, = ,g$iy-” + ( 1  - 5) @;k’ (0 Q Q l) ,  

where r9 denotes the relaxation factor and E indicates the weight factor. This inner 
iteration is continued until 

- $ $ ~ ~ + ‘ ) l  < €* On Rh (17) 

is satisfied for the preset value of tolerance et. After this, we define $.f\ = $ f j k )  on Rh. 
(iii) Substituting $$ti on R, in (A 9), we can determine $.fi on Ph. 
(iv) Next, uj:\ on 8, can be determined from (A 7) by using +i:\ on R, + Ph + sh 

obtained in steps (i)-(iii). 
(v) We proceed to determine u“,\ on R,+P, by applying the SOR method again. 

We set first up.’” = uf!j on S, and up$) = u$:\ on Rh+Ph. Then we get $::>“’ on 
Rh +Ph as in step (ii), by using the recursion formula based upon (A 4): 

4 1 ,  g) = (1 - ro) ,(1~.K-1) - 5 {b “(1, g-1) + b u(l*.g-l) 
“ i , J  2.3  1 %+1,5 2 a,3+1 

b0 
+ b  &K) b &K) b i#*K! 

3 a - l , J +  4, %,5-1+ 6 z-1.3-11 (O < r o  < 2) ,  

“(I.=) i, 5 = &u!l*=-”+ 2, J ( 1  -s)Z#j=) (0 < s < 1). 
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When 
on 

is satisfied for the preset value of tolerance c,, we define w& = w & ~ ’  on Rh + Ph. 

the iterative solutions +it\, wf\, +!?J, w{:\, . . . , successively. When 
(vi) Thus, after steps (ii)-(v) (the outer iteration) are repeated, we can determine 

are satisfied simultaneously, these numerical solutions +iyr and wt), are taken to be 
the approximated ones of +(x, y) and w(x, y) respectively. 

Although the first upwind difference used here provides iterative stability for large 
Reynolds number, a substantial increase in truncation error is produced because of 
the only firat-order accuracy of this difference scheme. And also, a numerical solution 
in the upwind-difference scheme sometimes involves an additional error due to the 
effect of ‘artificial viscosity’ (or ‘numerical viscosity ’). At small Reynolds number, 
however, the convective terms are less important and the use of the upwind difference 
does not introduce serious error. Thus it is generally realized that the firat-upwind- 
difference method has several advantages and is available to obtain usable solutions, 
although the artificial-viscosity effect and the truncation error must be considered 
when assessing the accuracy of the results (see Roache 1972). 

In the present calculations, the integral numbers of meshes are chosen as N = M = 30 
in all calculations but one. From numerical results for velocities, it is ascertained that 
the sensitivities of numerical solutions to the variations of N and M are always smaller 
than the preset criterion 10-4 whenever they are greater than 30. This fact indicates 
that the numerical results are independent of the local Reynolds number of the mesh 
size, and therefore that the truncation error and the artificial viscosity do not appear 
for this range of N and M. In the case of the calculation to be compared with the 
experimental results, they are exceptionally chosen as N = M = 20, and the accuracy 
in this case will be discussed later ( J  3.3). 

The tolerances t+ c,, which are used in the determinations of convergences in the 
inner and the outer iteration process, are chosen as e* = e, = 6 x The 
optimum values of the relaxation factors r+, r, and the weight factors 6, 8, which 
dominate the convergence and the stability of the iterations, are determined empiri- 
cally to be r* = 1.8, r, = 0.8, E = 0-1,6 = 0.8 for all calculations. 

3.2. Awlysie of the pressure and the stress Jield 
The flow in the region of finite wavetrain obtained by the analysis in $3.1 involves 
the periodic flow at the central part of the region, which is independent of the arbitrary 
condition assumed at the leading and the trailing end section, if the integral number 
L of the waves chosen is appropriately large. As mentioned earlier, this periodic flow 
is considered to be the same as the flow induced by an infinite train of waves. Thus 
the pressure field and the stress field with respect to the one-wavelength region of the 
periodic flow are calculated in the following manner. 

15-2 



446 S.  Takabatake and R. Ayuhwa 

From the two-dimensional steady Navier-Stokes equations, introducing the stream 
function $ and the vorticity w gives the pressure terms in dimensionless form aa 

These equations are easily approximated by the difference equations, and %he values 
of the pressure gradients (ap/ax)$,, (ap/ay)cl at each lattice paint can be calculated 
by using @$,,mi, obtained in $3.1. Thus, by integrating numerically these discrete 
values along the lattice coordinates, the pressure values indicated by the Werences 
from a reference pressure at the given point can be determined at all of the points in 
the region. 

For a two-dimensional flow, the components of the stress tensor in the Cartesian 
coordinate system (x ,  y) can be described in terms of dimensionless quantities as 

au cry = 2a- av Tzy = a ( z + c z g ) .  
ax ay’ 

a, = 2a2- 

And, considering the orthogonal c urvilinear coordinate system (a,/?) along the peri- 
staltic wall (see figure l) gives the following formulae for the components of the 
dimensionless stress on the wall: 

ra = gz COB 28 + rzy sin 28, 

wb = nu COB 28 - r,y sin 28, 

raB = I- cz sin 28 i- TZy COB 28, 

8 = arctan (2nq5asin 2nx), 

(23 4 
(23b) 

(234 

(24) 

where 0 denotes the angle of the wall slope. 
Approximating (22) by the difference equations in terms of +$, and q5, the stress 

components in the (2, y)-system can be obtained a t  all of the points: the stress com- 
ponents in the (a,@)-system can then be calculated at the points on the wall. 

3.3. Comparison with experiments 
In this subsection, numerical calculations are performed for a two-dimensional 
asymmetrical channel with one wall fixed and the other moving, and the validity of 
the present analysis is confirmed through a comparison of the predicted velocity 
profiles with the measured ones.? 

In  the present analysis, the periodic flow appearing at  the central part of the finite 
region is adopted as the solution of the flow in an infinite channel since it is not in- 
fluenced by the arbitrary conditions on both the end sections. The periodicity of the 
flow pattern is judged from the velocity profiles on the sections at  the crest and the 

t The apparatus used for the experiment covered a range of large Reynolds numbers of order 
about 1W-108. Hence, if the amplitude *ti0 was too small, the pressure difference between the 
two end sections was extremely small, being on the scale of a few mmH,O. So the value of the 
pressure rise could not be measured with satisfying accuracy. For this reaaon, a comparison 
with the experiments is carried out only for velocity profiles. 
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Ulc = 0.2 - 
Trailing end Leading end 

0.5 

0 

(b )  
Framm 3. Longitudinal velocity proflea at the trough and the crest aection in the finite region 
with eleven wavw, for the asymmetrical channel; g5 = 0.19, a = 0.21, Re = 210, 3 = 0. 
- , Trapezoidel velocity proillea; - - - -, parabolic velocity profiles assumed at the leading 
and the trailing end section. (a) Trough sections. (a) Crest sections. 

trough of the wave. Namely, when the velocity profiles on the sections a t  the crest 
and the trough are compared with the next ones, we regard the flow periodic if both 
absolute differences are smaller than 

For the calculation in figures 3-6, because of the extremely large Reynolds number, 
and also because of the finite vdue of the wavenumber, it was required that the number 
L of waves had to be large. Therefore, the calculation using N = bl = 30 failed to 
converge, but the stable numerical solution could be obtained after changing into 
N = M = 20. For this reason, the calculation in these figures was carried out by 
using N = M = 20. As mentioned in 8 3.1, although velocities are sensitive to N and 
M for (N, M) < 30, especially in the vicinity of the wall at large Reynolds number, 
an error in the velocities due to the modifications of N and M from 30 to 20 was of 
order 10-2 at most, except very close to the wall. 

Figure 3 shows the longitudinal velocity profiles in the laboratory frame at  the 
trough and the crest sections in the finite region with eleven waves, which are obtained 
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-0.3 -0.2 -0.1 0 

0.5 

UIC UlC 
FIQURE 4. Comparison between plculated and experimental longitudinal velocity profiles for 
# = 0.19, a = 0.21, Re = 210, 9 = 0. -, - - - - , profile obtained by the present method 
in the periodic flow region and in the third wavelength region respectively; 0, experimental 
results of Ayukawa et a2. (1981). 

by assuming the different profiles of @ on the end sections. In the figure, the solid 
curves show the results obtained by assuming @ on both the end sections to have the 
trapezoidal velocity profiles, while the dashed curves are those for the parabolic 
velocity profiles. In  both cases, the velocity profiles are influenced by $ assumed on 
the leading end section, but this contribution becomes gradually weaker as they get 
away from it. The regular profiles independent of $ on the end sections are observed 
in the central part of the region (9th and 10th wavelength region from the leading 
end section). The velocity profiles for the case of the trapezoidal profiles on both the 
end sections (shown by the solid curves in figure 3) are compared with the experimental 
results (Ayukawa et al. 1981) in figure 4. In  this figure, the solid curves represent the 
profiles in the region at which the periodic flow pattern appears (i.e. @and@in 
figure 3), while the dashed curves represent those in the 3rd wavelength region from 
the leading end section (i.e @ and 0). The dashed curves, rather than the solid 
curves, are in good qualitative agreement with the experimental results, and this 
fact is explained as follows. The measurements of the velocities were carried out in 
the 3rd wavelength region by using the experimental apparatus, which could impose 
four waves on the constant test length of the channel. Therefore the influence of the 
leading end section occurred in the experimental velocity profiles, and the inlet velocity 
profile at the leading end section was supposed to be an almost-trapezoidal form 
because the Reynolds number was large. It is considered that these two matters have 
caused the measured velocity profiles to resemble the dashed curves rather than the 
solid curves. Also, the quantitative difference between the predicted and the measured 
velocity is considered to result from the existence of leakage through the so-called 
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-0.15 
-0.10 
-0.05 
-0.02 
0 

-0.15 
-0.10 
-0.05 
-0.02 
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( b )  

FIGURE 6. Laboratory-frame streamlies for q5 = 0.19, a = 0.21, Re = 210, 3 = 0. 
(a) Caloulated streamlines $/oh. (b)  Visualized photogmpl. 

‘inactive pumping region ’ of the experimental channel. Because this inactive region, 
on which the peristaltic waves are not imposed, acts as an inactive channel parallel to 
the active peristaltic channel, the fluid is forced to drift between the two channels, 
and the substantial operation of peristaltic pumping does fall somewhat. In taking 
these matters into account for the experimental results, it may be concluded that the 
agreement between the predicted and the measured velocity is satisfactory. A com- 
parison between the calculated and the visualized streamlines viewed in the laboratory 
frame is made in figure 6. 

4. Results and discussion 
The problem of peristaltic flow is controlled by four dimensionless parameters: 

the amplitude ratio g5( = e/h) and the wavenumber a( = h/h), which are determined 
by the geometry of the peristaltic wave; the Reynolds number Re( = (ch/v) a), defined 
from the governing equations; and the dimensionless pressure rise per wavelength 
MA( = h*ApA/pA) or the dimensionless time-mean flow 3( = &/ch), which is pre- 
scribed by the boundary condition. In this section, the velocity, pressure and stress 
fields of the flow are calculated for various values of these four parameters in the 
case of a two-dimensional symmetrical channel with both walls moving. Numerical 
results are used for an investigation of the effects of the wave amplitude, wavelength 
and Reynolds number on the peristaltic flow, by comparison with the theoretical 
results based upon the perturbation method. 
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X h  

FIQUEE 6. Longitudinal velooity profiles for d = 0.4, a = 0.2, Re = 1, ALPA = 0. 

I I I I I 1 

Crest section 

. I L I I - 0.1 0.2 0.3 0.4 0.5 
c o  

fa 

I Trough section 

F_IQURE 7. Velocities on the centre axis at the crest and the trough section for Re = 0.01, 
1 * 0. -, present method ; - . -, linear solution of Shapiro et aZ. (1969) ; - - - - , series solution 
up to order a* of Jaffrin (1973). 

4.1. Velocity field 
The velocity field can be calculated straightforwardly from the difference approxi- 
mation to (3). As an example of numerical calculations, profiles of the longitudinal 
velocity U in the laboratory frame are presented in figure 6, for q5 = 0.4, a = 0.2, 
Re = 1, APA = 0, when the dimensionless time-mean flow is obtained as 3 = 0.239. 
Two stagnation points 8, and S, appear along the axis near the trailing and the leading 
end respectively, separating the central region of a forward flow from two retrograde- 
flow regions. From the standpoint of peristaltic pumping, this retrograde flow at the 
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L Crest section 1 

1 I I . 
- u ;A-2 lo-' 1 10 102 103  

-0.2 c 
Trough section -0.4 

1 I 1 I I 1 I 
h a m  8. Velocities on the centre a h  at the crest and the trough eection for 4 = 0.2, a = 0.01, 
A? = 0. -, Present method; - - - - , aeries solution up to order Re¶ of JaErin (1973) ; - * -, 
solution of potential flow (Ayukawa et al. 1981). 

2.0 c 
-2 

-0.1 -0.1 

-0.02 -0.02 -0.02 

X / x  

P I O ~  9. Contours of the vorticity h / o ;  with q5 = 0.2, a = 0.01, Re = 20, 3 = 0. 

0-25 4.5 0.75 1.0 

trough region is considered to be a kind of ineffective leakage. When the time-mean 
flow is zero, the forward-flow region and the retrograde-flow region equally occupy 
half of the one-wavelength region, but the forward-flow region is here predominant 
because of the finite value of the time-mean flow. The profiles of U in the figure are 
almost parabolic at  each section, supporting the solution of Shapiro et al. (1969) 
obtained for the limit Re --+ 0, a + 0. However, the profiles at sections near the leading 
stagnation point 8, are seen to be deformed slightly from the parabolic profiles, 
because of the effects of fluid inertia and wall slope, due respectively to the finite 
values of Re and a. This deformation is notable especially in the wall neighbourhood. 
It is therefore supposed that the mixing.mechanism of peristaltic flow grows up from 
the neighbouring region of the wall near the leading stagnation point if Re and/or a 
bewme larger. 

The effects of $, a and Re upon the velocities on the axis at the crest and the trough 
section are shown in figures 7 and 8 in the case of zero time-mean flow, together with 
the linear solution of Shapiro et d. (1969), the second-order perturbation solution of 
JafFrin (1973) and the approximate solution of potential flow (Ayukawa et d. 1981). 
In flgure 7, in the range of small a at all values of $ the velocities on the axis are 
constant, and they are in coinoidence with the solution of Shapiro et al., while in the 
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range of large u their absolute values decrease with increasing a. This contribution 
of a to the velocities is found a t  smaller values of a as $becomes larger. As shown in 
figure 8 ,  for Re < 1 both velocities at the crest and the trough section are independent 
of Re, whereas for Re > 1 their absolute values decrease and approach asymptotically 
the solution of potential flow as Re increases. For an example of the vorticity contours 
at moderate Reynolds number, figure 9 represents one for Re = 20. The vorticity is 
concentrated in the region adjacent to the wall, and the vorticity in the extensive 
region near the axis is very small. It is ascertained from this fact that the flow at 
moderately large Reynolds number is almost irrotational and can be approximated 
well by the potential flow, except in the region adjacent to the wall. 

4.2. Trajectory of the fluid particle 
The trajectories of the fluid particles are significant objects for the investigation of 
the mixing mechanism of peristalsis. Shapiro et al. (1969) analysed the Lagrangian 
trajectory of a fluid particle for inertia-free flow and obtained the following conclusions. 
A particle period, which is the time interval until the particle occupies the same loca- 
tion relative to the wave as it did at  the start, does not always coincide with the wave 
period, and fluid particles near the peristaltic wall undergo a net negative displacement 
called ‘reflux’, for small time-mean flow. Here the same arguments are developed with 
respect to the particle trajectory and the reflux phenomenon, extending over large 
Reynolds numbers.? 

The trajectory of the particle can be obtained by integrating the simultaneous 
equations 

dY 
dT - ’ u, -- ax 

dT 
-= 

successively from the initial location of the particle. The integration is carried out 
numerically by the Runge-Kutta method. 

Examples of the particle trajectories at  moderate Reynolds number are shown in 
figure 10. In the figure, the open circles indicate the initial locations and the filled 
circles the locations at  the end of one and two wave periods. The resultant partiole 
periods do not coincide with the wave period, and the particle repeats the same 
trajectory completely for the successive particle periods. These results are identical 
with that obtained at small Reynolds number by Shapiro et al. (1969). At the end of 
each particle period, however, the particle near the axis (initial location is X/A = 0.6, 
Y / h  = 0.3) experiences a net negative longitudinal displacement, while the one near 
the wall ( X / A  = 0.6, Y / h  = 1.0) undergoes a net positive longitudinal displacement. 

t There are two Merent definitions of ‘peristaltic reflux’ in the literature. One is the definition 
based on a Lagrsngian viewpoint (Shapiro et al. 1969; Weinberg et al. 1971; Jeffrin & Shapiro 
1971) and the other is that baaed on an Eulerian viewpoint (Fung & Yih 1968; Yin & Fung 
1969, 1971; Zien & Ostrach 1970; Li 1970). Although these two definitions me made of two 
Merent phenomena, the same term ‘reflux’ is unfortunately used. This discrepancy induces 
inevitably different conclusions as to an appearance of ‘reflux’. Since we are interested in the 
mechanism of a mixing peristaltic motion such as the retrograde motion of bacteria from the 
bladder to the kidneys, the appropriate quantity to investigate is considered to be the hgrangian 
displacement of a particular 5uid particle and not the Eulerian time-mean velocity. We therefore 
use ‘reflux’ in the Lagrangian sense for the phenomenon of a net negative displacement of a 
particle tl‘sjectory. 
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3 

FIQURE 10. Examples of particle trajectories at m2derate Reynolds number; 
9 = 0-4, a = 0.01, Re = 10, .$! = 0. 

These travelling behaviours of the fluid particles are entirely opposite to that at  small 
Reynolds number. The dependence of the longitudinal displacement of the particle 
at  the end of one particle period upon Reynolds number and upon the lateral position 
at the start are illustrated in figure 11. This figure indicates that the fluid particles 
experience the longitudinal displacement in the opposite direction whether the 
Reynolds number is larger or smaller than unity. Thus it is concluded that the reflux 
phenomenon in the hgrangian sense occurs near the wall for Re < 1, but near the 
axis for about Re > 1. 

Yin t Fung (1969) mentioned that when the particle reached the same lateral 
location as at  the start the longitudinal location relative to the wave waa not generally 
the same as at  the start and the trajectory did not immediately repeat itself. But we 
have obtained a result different from theirs with respect to the particle trajectory. 
In our investigation, the particle period of a particle undergoing a net positive dis- 
placement is always greater than the wave period, and vice vem,  and the wave 
progresses during the difference of the particle period from the wave period so that 
the particle returns to the same longitudinal location relative to the wave. Therefore 
every particle repeats eventually the same trajectory for the successive particle 
periods. Because the displacements of the particles shown in figure 11 were measured 
on the basis of the particle period of each particle, the measured time intervals were 
different for individual particles at  initially different lateral locations. Hence an 
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xlx 
FIGUIXE 1 1. Effect of Reynolda number on&he reflux phenomenon ; 

with q5 = 0.4, a = 0.01, 22 = 0. 

X J A  

F r a m  12. Contours of the pressure hap/& for the flow in figure 6. 

integration of this displacement profile across the cross-section does not immediately 
give us the time-mean flow rate. If we consider the displacement on the basis of 
wave period, the integral value of the displacement profile in which we find some 
lateral displacement of the particle will be identical with the time-mean flow rate. 

4.3. Preeaure field 
Figure 12 shows an example of the pressure contours, in which the pressure values 
relative to the reference pressure p = 0 at the point x = y = 0 are normalized in the 
dimensionless forms h2p/,ucA. Both the maximum and the minimum pressure me 
seen dong the peristaltic wall, and their positions are at about x/A = 0.37 and 0.93 
respectively. The effects of Re on the pressure contours for the free-pumping end 
condition (i.e. the pressure rise per wavelength is zero) are illustrated in figure 13, 
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FIQ~SE 13. Preeeure distributions along the peristaltic wall for # = 0.4, a 
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FIOWEE 14. Preeeure rise per wavelength for Re = 0.01,z = 0. -, Present method; 
---- , Jaffrin (1973) ; - * -, Zien & Ostrach (1970) ; - - * -, Shapiro et a2. (1969). 
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Rawm 16. Effect of the wall slope on the pressure rise per wavelength; Re = 0.01, 5 = 0. 

- , $ = 0.2; - - - -, 0.3; - . -, 0.4; - * -, Zien & Ostrach (1970). 

which shows the pressure distributions along the wall for various values of Reynolds 
number. When Re is extremely small, the pressure on the wall is positive at the 
contracting part of the channel and is negative at the dilating part. Thus the distri- 
bution along the wall is closely antisymmetric about the midsection. As Re increases, 
the positions of the maximum and the minimum pressure move forward (positive 
2-direction), and a nearly symmetrical distribution along the wall is found. In the 
cme where the pressure distribution along the wall is nearly symmetrical about the 
midsection, the pressure work done by the wall is mainly cancelled between the 
dilating part and the contracting part. In contrast, in the case of the antisymmetrical 
distribution, as seen at low Reynolds numbers, the flow is given the energy equal to 
the pressure work done by the motion of the wall in a relatively greater degree than 
in the former case, and this energy is consumed in the flow as the stress work caused 
by the viscosity of fluid. 

The dimensionless pressure rise per wavelength A.9'AY at zero time-mean flow, is 
plotted against a for various values of # in figure 14. Both solutions of Jaffrin (1973) 
and Zien t Ostrach (1970) in the figure are the series solutions up to order as based 
upon the perturbation analysis. In the present results, A9'A is caused to increase by 
the effect of the wall slope as a increases, and this contribution appears at  smaller a 
as 9 increases. A similar tendency has been encountered in the results of velocities 
on the axis, as mentioned in 8 4.1 ; therefore it is supposed that the product of a and q5 
(i.e. € / A )  is the significant geometric factor that controls the flow field in the peri- 
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FIGURE 16. Pressure rise per wavelength for 3 = 0, compared with other theoretical results. 
- , Present method; - - - -, Jdrin (1973) ; - - -, Zien & Oetrach (1970) ; - -, Shapim et at. 
(1909). (a) fi = 0.2, a = 0.01; (b)  0.4, 0.2; (c) 0.6, 0.01. 

staltic channel. Thus we try to rearrange these results as the plots against the para- 
meter a$ in figure 16, where the ordinate APA-  (A9A)a-o indicates directly the con- 
tribution of the wall slope effect to the pressure rise per wavelength. The curves of 
the present results are gathered up very well, and may be expressed approximately 
by one curve, in spite of different values of 9. In the analysis of Zien k Ostrach, the 
contribution of a to the pressure rise per wavelength is expressed by the second-order 
term as V#(aq5)8, which is presented as a function of a#, though some difference is 
found between this and the present results. Jaffrin also obtained the second-order 
term in the form 

Although this solution can be reduced to a function of @ corresponding to thesolution 
of Zien & Oatrach for + < 1, it is impossible to do this in the range of moderately large 
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FIQURE 17. Pressure-flow characteristics for various Reynolds numbers. -, Preaent method; 

- - - -, Jaffrin (1973). (a) q5 = 0.2, a = 0.01 ; ( b )  0.4, 0.2. 

value of #. Figure 16 shows the effects of fluid inertia on pressure rise at  zero time- 
mean flow for three cases of different values of a and #, as compared with the analytical 
results. In all ca.se8 WA is constant and independent of Re for about Re < 1, and 
decreases monotonically with increasing Re for Re > 1. In figures l6(aY c)  constant 
values of APA for Re + 0 are coincident with the other results, whereas in figure 16 (b) 
they disagree with each other owing to the difference in the estimations of the effect 
of a on APA. In particular, Jaffrin mentions that the inertia effect makes the pressure 
rise increase in case of large amplitude ratio of q4 > 0.4, in contrast to the tendency 
for # < 0.4, but the present result for # = 0.6 shows that the inertia effect makes the 
pressure rise decrease with the same tendency for # Q 0.4. This is in contrast to the 
prediction of Jaffrin’s analysis. 

A pumping performance of the peristalsis is suitable for the transport of LI parti- 
cular fluid which it is necessary to prevent from coming into contact with the mechani- 
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FIGURE 18. Maximum time-mean flow obtained at @A = 0. -, Present method; 

---- , Jaffrin (1973). (a) 9 = 0.2, a = 0.01; (b) 0.4, 0.2. 

cal parts. In order to investigate the possibilities of peristaltic pumping for engineering 
application, we examine the relation between the pressure rise per wavelength and 
the time-mean flow (i.e. the pressure-flow characteristic), which is equivalent to the 
relation between the total head and the flow rate in the pump. For the two cases of 
different amplitude ratio, the pressure-flow characteristics for various Reynolds 
numbers are presented in figure 17. The relation between the pressure rise per wave- 
length A9’A and the time-mean flow 3, represented in dimensionless forms, can be 
expressed by a straight line with negative slope for any value of Re, and the slope of 
the line becomes slightlygentler as Re increases. In the rangeof large Re, aconsiderable 
disagreement is found between the present result and Jaffrin’s bemuse of the difference 
in the estimations of the effect of Re upon APA as shown in figure 16, but for extremely 
small values of Re they are in good agreement. Figure 18 shows the time-mean flow for 
zero pressure rise, which is interpreted as the maximum time-mean flow transported 
by the peristaltic pumping. In considering the peristaltic device as a pump, it is in 
this quantity that there is a practical interest. 
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0.0 1 0.03442 
0.1 0.3484 

0.3 1.233 
0.35 1.541 
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FIGURE 20. Maximum shearing stress on the peristaltic wall for Re = 0.01, 3 = 0. 

-, 9 = 0.2; ----, 0.3; -.-, 0.4. 
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4.4. Shearing strese along the wall 
The investigation of shearing stress in a flow field is a significant problem, because 
strong shearing stress may cause damage to blood elements, for example, when blood 
is employed as the working fluid; the same reason also holds in other fluids. 

The distributions of shearing stress along the wall for zero time-mean flow are 
illustrated in figure 19 for various values of a. In this case, since Re is very small, the 
distributions are almost symmetric about the midsection. Although for small a 
shearing stresses vary slightly along the wall, for large a the steep variations are 
found in the distributions and the maximum shearing stresses on the wall become 
remarkably large. As in 84.3, by rearranging these maximum shearing stresses as 
functions of a$, they may be represented well by one curve, as shown in figure 20, in 
spite of different values of $. 

5. Concluding remarks 
On investigating the effects of the geometrical shape of the peristaltic wave upon 

the flow field, the numerical results for the pressure rise and for the shearing stress 
can be correlated in terms of a$, as shown in figures 15 and 20. This fact indicates 
that the parameter a$ is a significant factor in controlling the peristaltic flow, and 
suggests that in the perturbation analysis the expansion with u$ is more effective 
than that with a or with $ alone, as has been usual in previous work (e.g. Fung & 
Yih 1968; Zien & Ostrach 1970; Jaffrin 1973). 

From the results of figure 16, it has been elucidated that the magnitude of Re a t  
which the fluid-inertia effect appears in the whole region of the flow field is about 
unity, and it becomes somewhat smaller than unity in the case of a wave with a 
steep slope (i.e. with large a$). The perturbation solutions of Jaffrin (1973) and Zien 
& Ostrach (1970) are found to be valid in a narrower range of Re than that which they 
predicted, when compared with our analysis. It is supposed in our research that the 
applicable range of the perturbation method is nearly the same as that in the inertia- 
free analysis of Shapiro et al. (1969) for practical use. 

The reflux phenomenon is found near the centre axis at  large Reynolds number, 
although it occurs near the wall for small Reynolds number, as pointed out by Shapiro 
et al. The motion of a fluid particle depends on the distribution of Eulerian velocities 
in the channel. While their profiles are locally of Poiseuille type in an inertia-free 
case, they are rather suggestive of plug flows at  large Reynolds number. This difference 
in the velocity fields causes the different behaviour of a fluid particle according to 
whether the Reynolds number is small or large. 

The authors wish to express their gratitude to Professor K. Morita of Ehime Uni- 
versity, Dr Y. Tsujimoto and Professor K. Imaichi of Osaka University, and the 
referees, for their kind and useful advice in revising the manuscript. 
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FIUURE 21. Lattice points on the interior region. 

Appendix. A finitadifference method 
We consider six lattice points on the interior region rn shown in figure 21. The 

differential equation ( 1 2 )  can be transformed into the following finite-difference 
equation with a second-order accuracy when centred differences are used: 

@4, f + @i+L f + +i, f+l + @t-b f + @4,3-1 -k a6 @4-1, 3-2 -k @a, f = 
(i = 3, ..., N -  1; j = 3, ..., M- I), (A 1) 

where 

We shall now try to derive the finite-difference equation approximating to (13). 
In this derivation, approximations to the convective terms of (13) are done by the 
first upwind-difference technique (see e.g. Greenspan 1968), which is superior in 
stability and convergence for nonlinear terms, while the diffusive terms are approxi- 
mated by using centred-difference methods. The resulting finite-difference expression 
for (13) is obtained as follows on the interior points: 

bO@i,~-kblw4+l,~~bZwi,3+1~b3@i-l,f~b4@i,~-1~b6@i-l.f-1 = 

( i = 2  ,..., N; j = 2  ,..., M ) ,  (A4) 
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where 

Next, we consider four or five points on and near the boundary (figure 22) to obtain 
the difference approximation to w at the boundary. The following equations are 
derived by expanding @ into a Taylor series around the point numbered 0 and by 
using (16): 

I 2 2 
wg,j = -- ht @<, J+l -a (fixed wall) or 0 (centre axis) 

i 
(i = 1, ..., N +  1; j = l), 
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FIGTJRE 22. Lattice points at the boundary. 
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FIGURE 23. Lattice points at the boundary. 
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Finally, three points are considered on and near the boundary (figure 23). The follow- 
ing expressions for $ at the interior points next the boundary are immediately 
obtained from (15): 

$*,* = w*,,+r 2h*) (fixed wall) OF #$*,*+1 (centre axis) 

l h . 5  - 

$*,I = i($*,,-,+%+2h*) (i = 2,..., N ;  j = MI, 

(i = 2, ..., N; j = 2), 
- ’~-1.3$.i+l.,’’*i.I~*-tf (i = N ;  j = 2, . . . , M ) ,  

4, 5 + 4-t 5 
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